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About this Talk

HPC for analyzing the results of large scale parallel numerical simulations
(and not Big Data applications on HPC plateforms)

Most of my examples taken from molecular dynamics

Good overview document:

2013 DOE report on Synergistic Challenges
in Data-Intensive Science and

Exascale Computing
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Exascale

2016 2020

Tianhe-2 (China) Exascale
#1 @ Top 500 Machine

33 PetaFLOPS

1 ExaFLOPS

3 120 000 cores  O(1 000 000 000)
cores

20 MW



The Data Challenge

More compute capabilities -> larger simulations -> more data

Usability Challenge:
» How to extract meaningful information from this huge amount of data in a reasonable time
» Analysis tools have not been considered as first class citizen so far. They did not receive
the same as simulation codes. Today analysis codes are either:
- In the simulation codes
- Scripts (with limited parallelism)
- Rely on on scientific visualization tools like Paraview/VTK or Visit (reasonable
parallelism support)

Performance Challenge:
* Moving data becomes the bottleneck for simulation as well as data analytics
» Compute capabilities increase faster than data transfer ones
» Data movements and storage consume 50%-70% of total energy (ScidacReview 1001)
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Traditional Workflow

Job submission

Job Scheduler

Execution
(num. simulation)

Analytics

Visualization

—

Big Machine

S—

—

Small Machine
(laptop)

S—

Not sustainable at Exascale !

Simulation codes may include
some analysis

Limited support for parallelization



A Data Challenge Already Present
Scientists already spend a significant part of their efforts in the data analysis:

Computational Biology:
« 2013 Molecular Dynamics Simulation wit Gromacs: 21’000°000 CPU hours (Curie
supercomputer)
* More than 5 TB of data
« Analysis (VMD, MDAnalysis) still on-going work

Material Science:
« Molecular Dynamics Simulation with Stamps: 700 million atoms on 4096 cores, 1 million
iterations
« Qutput: 1 every 10000 iteration, 100GB each
* Analysis (in-simulation code, Paraview/VTK):
about 30% CPU wall clock time of the simulation time wall clock time.

A simple but classical strategy to limit the impact of the data challenge:
Reduce output frequency
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Big Data: Google Map/Reduce

Google Map/Reduce (2004):
- Two data parallel operators: map, reduce
- Values are indexed with a key (key/value model)
- Parallel execution on a cluster (distributed memory)
- Runtime takes care of tasks scheduling, load balancing and fault tolerance

Map Shuffle Reduce



Big Data: Beyond Map/Reduce

The original model has been extended in different ways (Spark, Flink) to support complex
analysis plans:

- More operators (join, union,....)

- In-memory data store

- Iterative scripts

- Streaming (interactive scripts)

Augmented with specialization layers to support:
- SQL queries
- Large graph processing
- Machine learning

But tailored for:

- Running un cloud infrastructures (do not leverage supercomputers specifics)
- Process web data (web pages, tweets,...)
And Java based
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HiMach [TU & al., HIMach, SC 2008]

A map/reduce like framework for analysing molecular
dynamics trajectories

* Key/value store + map/reduce like operators
SN o R ]

 |Implementation:
 Python + MPI
 No fault tolerance
e Use VMD for some compute kernels

Figure 2. Ion permeation through a channel.

 Some analysis need only to keep one timestep at a
time in memory (counting ion passing though a
channel), other need a sliding window of timesteps
(RMSD on a sliding window )
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VelaSSco (FP7

Query based Scientific Visualization

FEM/DEM simulation data
Hadoop software suite (MapReduce, HDFS, Hbase,

Yarn, Thrift)

Key/value: (timestep+rank-id, data)

Scientist request some visualization (isosurface for a
given timestep):

* Visclient <->front server <-> map/reduce job <-
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Traditional Workflow

Job submission

Job Scheduler

Execution
(num. simulation)

Analytics

Visualization

—

Big Machine

S—

—

Small Machine
(laptop)

S—

Not sustainable at Exascale !

Simulation codes may include
some analysis

Limited support for parallelization



Workflow with Map/Reduce

Job submission

Job Scheduler

Execution Big Machine Simulation codes may include

S—

(num. simulation) some analysis

- Do not fix the data movement bottleneck

—

Analytics

Cluster . Map/Reduce approach

. :
Visualization High level parallel programming model



WorkFlow with In-situ Analytics

Job submission

Job Scheduler

—

Execution:
num. simulation Big Machine

Reduced
e Data
Movements

In-situ analytics:

Data reduction
Large scale parallel analytics
On-line monitoring



In Situ Processing: What for ?

Data compression (Isabela [Lehmann & al. LDAV’14] )
Indexing (FastBit, Dirac [Lakshminarasimhan & al. HPDC’13] )
Storage (DataSpaces [Docan & al. Cluster Computing 12] )
Analytics (1D, 2D, 3D descriptor computing)

[Dreher & al.
Faraday Discussion’14]
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In-simulation
Simulation ileration(s) — 4 Analyiics _ 2
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In-simulation Processing

— T|me

No analytics
Simulation iteration(s) /O Simulation iteration(s)

7

za—

Simulation iterati

Simulation slowdown mainly
due to cache thrashing

—



Simulation slowdown
due to concurrent use of some
resources with analytics and 1/Os

In-situ Processing

No analytics
Simulation iteration(s) Simulation iteration(s)

In-situ
Simulation iteration(s) Simulation iteration(s)
Analytics
Simulation Iytics  In-situ:
I+ simulation and analytics share
It++ Data copy the same nodes
>

Rgsourcg allocation stratggles. .' Simulafion Helper core
time sharing or space sharing Node /
..iimuILtion @tﬂcﬂ &

(dedicated helper core)

N
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In-transit Processing

Time

In-transit

Simulation iteration(s) Simulation iteration(s)

coN*cation
Analytics /O

S°" Son In-transit: simulation and Analytics run

Sim on different nodes (staging nodes)
node tlon Son

commuipication

Stagmggm @m
node @“@
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In-Sim vs. In-Situ |/O [Dreher,CCGRID’14]

Gromacs no I/0O /O in-situ on
1200 - M gromacs-0-15cores \ helper core
§~ B gromacs-0-16cores
: 900 I gromacs-100-15cores
§ B gromacs-100-16cores _
S B flowvr-100-hdf5 Gromacs native
g 600 m flowvr-100-xtc /O (in-simulation)
3
®
E 300 : ‘
o
O
0
128
Nodes 2048 cores (froggy@CIMENT)

Gromacs without 1/0: 15 cores/node 3% slower than 16 cores/node
(- 6% if scalability would have been perfect)
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Parallel In-Situ Isosurface Extraction [Dreher,CCGRID14]

(= ~ A\ D
Gromacs Gromacs Gromacs Gromacs
Gromacs Gromacs Gromacs Gromacs
Gromacs Gromacs Gromacs Gromacs
Compute-1 Compute-2 Compute-3 Compute-4
a -
Staging-1 Staging-2
Compute a molecule surface § § |

based on atom density

Tested different distributions of processing
steps to in-situ and in-transit nodes.
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Gromacs frequency (Hz)
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Performance [Dreher,CCGRID’14]

1200

900

600

300

zia—

B gromacs-0-15cores
B gromacs-0-16cores

I quicksurf-density-intransit

B quicksurf-density-insitu
B quicksurf-atoms-intransit

16 32

Gromacs performance with Quicksurf

Nodes

Gromacs +
Isosurface

Gromacs
no I/O

\

64 123

(froggy@CIMENT)

In transit: 1 staging
node every 64
compute nodes

Density-intransit:
costs 7% comp. to
gromacs 15 cores

Density-insitu costs
8% but use 1.5%
less nodes than
density-intransit

Atoms-intransit costs
8.6% but enables
other in-transit
analytics (3x more
data to move on
stagging nodes than
Density-intransit)



In-Situ Analytics Status

- Paraview and Visit: support in-simulation data processing

- Advanced prototypes supporting in-situ and in-transit:

* FlexIO (IPDPS’13),
» Damaris (Cluster’12),
* FlowVR (CCGrid’14)

- In-memory data storage on staging nodes: DataSpace
- Programming model:

- MPI level (Damaris)

- In1/0O library (ADIOS)

- Data-flow (FlowVR)

No Standard Yet

I‘;‘W—



Conclusion and Discussion

Map/Reduce model: successful in Big Data why not in HPC
- High level programming model, “efficient” executions

In-situ Analytics: a paradigm shift
- An opportunity to rethink the use of the I/O budget

In-situ versus post-mortem analysis:
e Different tools or same one ?

* Interface between the two words with an in-memory
database (a la DataSpace) ?

* Programming model: Data flow oriented (a la Map/
Reduce) or a more classical HPC appraoch (a la MPI) ?

* Reusing Big Data software stacks or need to develop HPC

, specific ones ?
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