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HPC for analyzing the results of large scale parallel numerical simulations 
 (and not Big Data applications on HPC plateforms)  

Most of my examples taken from molecular dynamics 

 

Good overview document: 
 2013 DOE report on Synergistic Challenges 
 in Data-Intensive Science and 
 Exascale Computing 

About this Talk 
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2016 
 
 

 Tianhe-2 (China) 
#1 @ Top 500 

2020  
 
 

Exascale 
Machine 

33 PetaFLOPS 1 ExaFLOPS 

3 120 000 cores 
 

O(1 000 000 000) 
cores 

17.6 MW 20 MW 

Exascale 
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More compute capabilities -> larger simulations -> more data 
 
Usability Challenge:   

•  How to extract meaningful information from this huge amount of data in a reasonable time 
•  Analysis tools have not been considered as first class citizen so far. They did not receive 

the same as simulation codes. Today analysis codes are either: 
-  In the  simulation codes 
-  Scripts (with limited parallelism) 
-  Rely on on scientific visualization tools like Paraview/VTK or Visit (reasonable 

parallelism support) 

Performance Challenge:  
•  Moving data becomes the bottleneck for simulation as well as data analytics 
•  Compute capabilities increase faster than data transfer ones 
•  Data movements and storage consume 50%-70% of total energy (ScidacReview 1001) 
 

 

The Data Challenge 
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Execution  
(num. simulation) 

Disks 

Analytics 

Visualization 

Data 

 Data 

Big Machine 

Limited support for parallelization 

Job Scheduler 

Job submission 

Not sustainable at Exascale ! 

Traditional Workflow 

Small Machine 
(laptop) 

Simulation codes may include 
some analysis 
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Scientists already spend a significant part of their efforts in the data analysis: 
 
Computational Biology: 

•  2013 Molecular Dynamics Simulation wit Gromacs:  21’000’000 CPU hours (Curie 
supercomputer) 

•  More than 5 TB of data   
•  Analysis (VMD, MDAnalysis) still on-going work 

 
 
Material Science: 

•  Molecular Dynamics Simulation with Stamps: 700 million atoms on 4096 cores, 1 million 
iterations 

•  Output: 1 every 10000 iteration, 100GB each 
•  Analysis (in-simulation code,  Paraview/VTK):  

  about 30% CPU wall clock time of the simulation time wall clock time. 
 
A simple but classical strategy to  limit the impact of the data challenge:   

Reduce output frequency 

A Data Challenge Already Present 
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Google Map/Reduce (2004): 
- Two data parallel operators: map, reduce 
- Values are indexed with a key (key/value model) 
- Parallel  execution on a cluster (distributed memory) 
- Runtime takes care of tasks scheduling, load balancing and fault tolerance 

 

Big Data: Google  Map/Reduce 
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The original model has been extended in different ways  (Spark, Flink) to support complex 
analysis plans: 

- More operators (join, union,….) 
-  In-memory data store 
-  Iterative scripts 
- Streaming (interactive scripts) 

 
Augmented with specialization layers to support: 

- SQL queries 
- Large graph processing 
- Machine learning 

But tailored for: 
- Running un cloud infrastructures  (do not leverage supercomputers specifics) 
- Process web data (web pages, tweets,…) 

And Java based 

Big Data:  Beyond Map/Reduce 
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A	map/reduce	like	framework	for	analysing	molecular	
dynamics	trajectories	

•  Key/value	store	+	map/reduce	like	operators	
•  Implementa<on:		

•  Python	+	MPI	
•  No	fault	tolerance	

•  Use	VMD	for	some	compute	kernels		
•  Some	analysis	need	only	to	keep	one	<mestep	at	a	

<me	in	memory	(coun<ng	ion	passing	though	a	
channel),	other	need	a	sliding		window	of	<mesteps	
(RMSD	on	a	sliding		window	)	

	
	
		

	
		

HiMach [TU & al., HIMach, SC 2008] 
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VelaSSco (FP7) 
Query	based	Scien<fic	Visualiza<on		

•  FEM/DEM	simula<on	data		
•  Hadoop	soQware	suite	(MapReduce,	HDFS,	Hbase,	

Yarn,	ThriQ)	
•  Key/value:		(<mestep+rank-id,	data)		
•  Scien<st	request	some	visualiza<on	(isosurface	for	a	

given	<mestep):	
•  Vis	client	<->	front		server	<->	map/reduce	job	<-

>	HBASE		
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(num. simulation) 

Disks 

Analytics 
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Execution  
(num. simulation) 

Disks 

Analytics 

Visualization 

Data 

 Data 

Big Machine 

Job Scheduler 

Job submission 

Workflow with Map/Reduce 

Simulation codes may include 
some analysis 

Cluster Map/Reduce  approach 

+ High level parallel programming model 

- Do not fix the data movement bottleneck 
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Execution: 
num. simulation 
interleaved with 

analytics 

Disks 

Analytics 

Visualization 

Data 

Data 

Big Machine 

Job Scheduler 

Job submission 

Reduced 
Data 
Movements 

In-situ analytics: 
•  Data reduction 
•  Large scale parallel analytics 
•  On-line monitoring 

WorkFlow with In-situ Analytics 
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In Situ Processing: What for ?  
Data compression (Isabela [Lehmann & al. LDAV’14] ) 
Indexing (FastBit, Dirac [Lakshminarasimhan & al. HPDC’13] ) 
Storage  (DataSpaces  [Docan & al. Cluster Computing 12] ) 
Analytics (1D, 2D, 3D descriptor computing) 
 

    
 
 
 
 
 
 
 [Dreher  & al.  
Faraday Discussion’14] 
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In-simulation Processing 
Time 

Simulation iteration(s) I/O 

Simulation iteration(s) Analytics I/O 

Simulation iteration(s) 

Simulation iteration(s) 

No analytics 

In-simulation 

Simulation slowdown mainly 
 due to cache thrashing 
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In-situ Processing 
Time 

Simulation iteration(s) 

Analytics I/O 

Data 
Copy Simulation iteration(s) 

Simulation iteration(s) I/O Simulation iteration(s) 

Simulation slowdown 
 due to concurrent use of some 
 resources with analytics and I/Os  

No analytics 

Resource allocation strategies: 
 time sharing or space sharing 
(dedicated helper core) 

In-situ: 
simulation and analytics share 
the same nodes  

Helper  core  Node 

In-situ 
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In-transit Processing 
Time 

Simulation iteration(s) 

Analytics I/O 

Data 
Copy Simulation iteration(s) 

In-transit 

In-transit: simulation and Analytics run 
 on different nodes (staging nodes)  Sim 

node 

communication 

Staging 
node 

communication 
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I/O in-situ on 
helper core 

Gromacs native  
I/O (in-simulation) 

In-Sim vs. In-Situ I/O  [Dreher,CCGRID’14] 

Gromacs without  I/O:   15 cores/node 3% slower than 16 cores/node 
             (- 6% if scalability would have  been  perfect) 

2048 cores (froggy@CIMENT) 

Gromacs no I/O 
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Parallel In-Situ Isosurface Extraction [Dreher,CCGRID’14] 

Compute a molecule surface 
based on atom density 

Tested different distributions of processing 
steps to in-situ and in-transit nodes. 
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Performance [Dreher,CCGRID’14] 
•  In transit: 1 staging 

node every 64 
compute nodes 

•  Density-intransit:  
costs 7% comp. to 
gromacs 15 cores 

 
•  Density-insitu costs 

8% but use 1.5% 
less nodes than 
density-intransit 

•  Atoms-intransit costs 
8.6% but enables 
other in-transit 
analytics (3x more 
data to move on 
stagging nodes than 
Density-intransit) 

Gromacs  
no I/O 

Gromacs +  
 Isosurface 

 (froggy@CIMENT) 
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-  Paraview		and	Visit:	support	in-simula<on	data	processing	
-  Advanced	prototypes	suppor<ng	in-situ	and	in-transit:	

•  FlexIO (IPDPS’13), 
•  Damaris (Cluster’12),  
•  FlowVR (CCGrid’14) 

-  In-memory	data	storage	on	staging	nodes:	DataSpace	
-  Programming	model:		

-  MPI	level	(Damaris)	
-  In	I/O	library	(ADIOS)	
-  Data-flow	(FlowVR)	

No	Standard	Yet	

In-Situ Analytics Status 
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Map/Reduce	model:		successful	in	Big	Data	why	not	in	HPC	
	-	High	level	programming	model,	“efficient”	execu<ons	

			
In-situ	Analy:cs:	a	paradigm	shiQ	

	-	An	opportunity	to		rethink		the	use	of	the	I/O	budget	
	
In-situ	versus	post-mortem	analysis:	

•  Different	tools	or	same	one	?		
•  	Interface	between	the	two	words	with	an	in-memory	

database	(à	la	DataSpace)	?	
•  Programming	model:	Data	flow	oriented	(à	la	Map/

Reduce)	or	a	more	classical	HPC		appraoch	(à	la	MPI)	?		
•  Reusing	Big	Data	soQware	stacks	or	need	to	develop	HPC	

specific	ones	?	

	
	
		

	
		

Conclusion and Discussion 

- 22 



- 23 


